Oil & Gas Training
and Competency Development

Location Bakersfield, CA, United States
Start11 Dec 2017
End15 Dec 2017
Discipline Geology
Duration5 Days
CostUSD 4,500.00
Delivery Mechanism Practical Training with Software
Print Email

Geostatistical Reservoir Modeling: Standard Approach and Best Practices

4.3 Average client rating (based on 62 attendee reviews)

The course reviews the full spectrum of an integrated reservoir study from core/well log to fluid flow simulator. It addresses the practical requirements and workflows for modern 3D reservoir modeling. Participants learn how to use deterministic and stochastic modeling methodologies to quantitatively integrate diverse data types, model reservoir heterogeneity, assess model uncertainty, and prepare the reservoir model as input to a flow simulator, Particular emphasis is placed on the best modeling practices and data integration methodologies available using geostatistical techniques. The presentation includes an informal, interactive discussion of the agenda topics, illustrated with case studies and including computer workshops.

The objective of this 5-day course is to provide participants who have experience in building reservoir models, with the solid understanding of the underlying geostatistical methodologies used in Applied Reservoir Modeling.

The course provides discussion of the heart of geostatistics that includes data stationarity, spatial relationship (variogram), estimation (kriging and cokriging), and conditional simulation (SIS, TGS, SGS). Additionally, best practices on the workflow for building reservoir model will be presented. To enhance the understanding of the participants about these topics, the exercise for detail analysis and sensitivity, based on actual field data, is provided. All exercises will be done using PETREL.

This course is important for reservoir modelers or for any geoscientist/engineer involved in an integrated reservoir study. It is of particular relevance to reservoir modelers that are interested in getting a better understanding on the “black-box” of geostatistics techniques commonly found during the facies and property modeling process. It will also improve skills in the art of data integration.

Suggested course textbook, "Applied Geostatistics for Reservoir Characterization" by Kelkar and Perez. Cost via SPE (member price) is US$60 plus shipping.

  • Agenda
  • Topics
  • Instructors
  • Audience
  • Prerequisites
  • Agenda

    Day 1

    • Introduction

        o From Core to Simulation : An Integrated Reservoir Modeling Workflow

        o Role of Heterogeneity in Reservoir Modeling

        o Fundamentals of Geostatistics

    • Basic Statistics for Reservoir Modeling

        o Descriptive Statistics : Univariate and Bi-variate Analysis (Linear Regression)

        o Inferencial Statistics : Random Experiment, Probability and Probability Distribution Function (PDF)

    • Practical Session 1

        o Advantage and Disadvantage of Linear Regression

        o Gaussian Transform

    Day 2

    • Data Stationarity

        o Background Theory : Outlier, Log ,Trend (1D, 2D and 3D) and Normal Transforms

        o Practical Session 2 : Performing Data Analysis of Continuous and Discrete Variables

    • Spatial Analysis :

        o Covariance and Variogram in Spatial Space

        o Variogram Analysis : Definition, Variogram in Practice, Modeling, Anisotropy, and Uncertainty

        o Practical Session 3 : Building Variogram Model

    Day 3

    • Deterministics Modeling : Estimation Process (Kriging)

        o Kriging vs. Conventional Linear Interpolation

        o Kriging Fundamental : Simple and Ordinary Kriging

        o Kriging for Geological Facies

        o Role of Secondary Variable (Seismic and/or Concept) :

            - Preparing Secondary Variable

            - Reconciling Data Resolution

            - Universal Kriging (Trend Method)

            - Co-Kriging and Collocated Cokriging

            - Practical Session 4 : Sensitivity of Various Kriging Techniques

    Day 4

    • Stochastic Modeling : Stochastic Simulation

        o Preserving Heterogeneity : Estimation vs. Simulation

        o Continuous Variable Simulation using Sequential Gaussian Technique

        o Discrete Variable Simulation using Sequential Indicator and Truncated Gausssian Technique

        o Co-Simulation Process for Data Integration

        o Practical Session 4 : Sensitivity of Simulation Techniques

    Day 5

    • Practical Integrated Reservoir Modeling Process

        o Structure Modeling

        o Facies Modeling (Geological Facies and Rock Type)

        o Property Modeling (Porosity, Permeability, and Saturation)

        o Volume Calculation and Uncertainty Analysis

        o Moving to Dynamic Model

            - Dynamic Ranking

            - Upscaling

  • Topics

    Introduction - Fundamentals of Geostatistics

    Basic statistice for reservoir modeling

    Data stationarity and trends

    Spatial analysis - Variograms

    Modeling using Kriging and Cokriging

    Stochastic simulation and cosimulation

    Creating the static model - framework and properties

    Moving to the dynamic model - upscaling

  • Instructors

    Asnul Bahar
  • Audience

    Professional geologists, petrophysicists, geophysicists, engineers, managers & professional technicians

  • Prerequisites

    Knowledge of Geological techniques and processes ; structure and sedimentation. Understanding of Static & Dynamic reservoir modeling.

    Knowledge of PETREL software is an advantage. Suggested completion of Petrel fundamentals training.

  • Prerequisites

Filter upcoming courses by Country

Upcoming Courses
Bakersfield, CA, United States December 11 - 15, 2017 Bakersfield, CA, United States January 22 - 26, 2018 Bandung, Indonesia July 17 - 21, 2018 Astana, Kazakhstan November 05 - 09, 2018
NExT Technical Forum:
Continue your in-class discussion and questions in an online community